Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8011): 355-362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720042

RESUMO

The coupling of excitons in π-conjugated molecules to high-frequency vibrational modes, particularly carbon-carbon stretch modes (1,000-1,600 cm-1) has been thought to be unavoidable1,2. These high-frequency modes accelerate non-radiative losses and limit the performance of light-emitting diodes, fluorescent biomarkers and photovoltaic devices. Here, by combining broadband impulsive vibrational spectroscopy, first-principles modelling and synthetic chemistry, we explore exciton-vibration coupling in a range of π-conjugated molecules. We uncover two design rules that decouple excitons from high-frequency vibrations. First, when the exciton wavefunction has a substantial charge-transfer character with spatially disjoint electron and hole densities, we find that high-frequency modes can be localized to either the donor or acceptor moiety, so that they do not significantly perturb the exciton energy or its spatial distribution. Second, it is possible to select materials such that the participating molecular orbitals have a symmetry-imposed non-bonding character and are, thus, decoupled from the high-frequency vibrational modes that modulate the π-bond order. We exemplify both these design rules by creating a series of spin radical systems that have very efficient near-infrared emission (680-800 nm) from charge-transfer excitons. We show that these systems have substantial coupling to vibrational modes only below 250 cm-1, frequencies that are too low to allow fast non-radiative decay. This enables non-radiative decay rates to be suppressed by nearly two orders of magnitude in comparison to π-conjugated molecules with similar bandgaps. Our results show that losses due to coupling to high-frequency modes need not be a fundamental property of these systems.

2.
J Am Chem Soc ; 146(19): 13133-13141, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695282

RESUMO

Triphenylmethyl (trityl) radicals have shown potential for use in organic optoelectronic applications, but the design of practical trityl structures has been limited to donor/radical charge-transfer systems due to the poor luminescence of alternant symmetry hydrocarbons. Here, we circumvent the symmetry-forbidden transition of alternant hydrocarbons via excited-state symmetry breaking in a series of phenyl-substituted tris(2,4,6-trichlorophenyl)methyl (TTM) radicals. We show that 3-fold phenyl substitution enhances the emission of the TTM radical and that steric control modulates the optical properties in these systems. Simple ortho-methylphenyl substitution boosts the photoluminescence quantum efficiency from 1% (for TTM) to 65% at a peak wavelength of 612 nm (for 2-T3TTM) in solution. In the crystalline solid state, the neat 2-T3TTM radical shows a remarkably high photoluminescence quantum efficiency of 25% for emission peaking at 706 nm. This has implications in the design of aryl-substituted radical structures where the electronic coupling of the substituents influences variables such as emission, charge transfer, and spin interaction.

3.
Nat Chem ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702406

RESUMO

Porous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order. Constructing dynamic, yet crystalline and robust frameworks requires a well-controlled degree of flexibility. We have achieved this through a 'wine rack' design where rigid π-stacked columns of perylene diimides are interconnected by non-stacked, flexible bridges. The resulting COFs show stepwise phase transformations between their respective contracted-pore and open-pore conformations with up to 40% increase in unit-cell volume. This variable geometry provides a handle for introducing stimuli-responsive optoelectronic properties. We illustrate this by demonstrating switchable optical absorption and emission characteristics, which approximate 'null-aggregates' with monomer-like behaviour in the contracted COFs. This work provides a design strategy for dynamic 2D COFs that are potentially useful for realizing stimuli-responsive materials.

4.
J Am Chem Soc ; 146(11): 7763-7770, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456418

RESUMO

Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.

5.
Nat Mater ; 23(4): 519-526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480865

RESUMO

Hyperfluorescence shows great promise for the next generation of commercially feasible blue organic light-emitting diodes, for which eliminating the Dexter transfer to terminal emitter triplet states is key to efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. Here we introduce a molecular design where ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. Organic light-emitting diodes with simple emissive layers consisting of pristine thermally activated delayed fluorescence hosts doped with encapsulated terminal emitters exhibit negligible external quantum efficiency drops compared with non-doped devices, enabling a maximum external quantum efficiency of 21.5%. To explain the high efficiency in the absence of high-gap matrices, we turn to transient absorption spectroscopy. It is directly observed that Dexter transfer from a pristine thermally activated delayed fluorescence sensitizer host can be substantially reduced by an encapsulated terminal emitter, opening the door to highly efficient 'matrix-free' blue hyperfluorescence.

6.
J Am Chem Soc ; 146(4): 2379-2386, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251985

RESUMO

Control over the stereochemistry of metal-organic cages can give rise to useful functions that are entwined with chirality, such as stereoselective guest binding and chiroptical applications. Here, we report a chiral CuI12L4 pseudo-octahedral cage that self-assembled from condensation of triaminotriptycene, aminoquinaldine, and diformylpyridine subcomponents around CuI templates. The corners of this cage consist of six head-to-tail dicopper(I) helicates whose helical chirality can be controlled by the addition of enantiopure 1,1'-bi-2-naphthol (BINOL) during the assembly process. Chiroptical and nuclear magnetic resonance (NMR) studies elucidated the process and mechanism of stereochemical information transfer from BINOL to the cage during the assembly process. Initially formed CuI(BINOL)2 thus underwent stereoselective ligand exchange during the formation of the chiral helicate corners of the cage, which determined the overall cage stereochemistry. The resulting dicopper(I) helicate corners of the cage were also shown to generate circularly polarized luminescence.

7.
Adv Mater ; 36(1): e2307024, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37739404

RESUMO

Solution processing of hybrid perovskite semiconductors is a highly promising approach for the fabrication of cost-effective electronic and optoelectronic devices. However, challenges with this approach lie in overcoming the controllability of the perovskite film morphology and the reproducibility of device efficiencies. Here, a facile and practical aging treatment (AT) strategy is reported to modulate the perovskite crystal growth to produce sufficiently high-quality perovskite thin films with improved homogeneity and full-coverage morphology. The resulting AT-films exhibit fewer defects, faster charge carrier transfer/extraction, and suppressed non-radiative recombination compared with reference. The AT-devices achieve a noticeable improvement in the reproducibility, operational stability, and photovoltaic performance of devices, with the average efficiency increased by 16%. It also demonstrates the feasibility and scalability of AT strategy in optimizing the film morphology and device performance for other perovskite components including MAPbI3 , (MAPbBr3 )15 (FAPbI3 )85 , and Cs0.05 (MAPbBr3 )0.17 (FAPbI3 )0.83 . This method opens an effective avenue to improve the quality of perovskite films and photovoltaic devices in a scalable and reproducible manner.

8.
Adv Mater ; 35(45): e2303666, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37684741

RESUMO

Organic radicals have been of interest due to their potential to replace nonradical-based organic emitters, especially for deep-red/near-infrared (NIR) electroluminescence (EL), based on the spin-allowed doublet fluorescence. However, the performance of the radical-based EL devices is limited by low carrier mobility which causes a large efficiency roll-off at high current densities. Here, highly efficient and bright doublet EL devices are reported by combining a thermally activated delayed fluorescence (TADF) host that supports both electron and hole transport and a tris(2,4,6-trichlorophenyl)methyl-based radical emitter. Steady-state and transient photophysical studies reveal the optical signatures of doublet luminescence mechanisms arising from both host and guest photoexcitation. The host system presented here allows balanced hole and electron currents, and a high maximum external quantum efficiency (EQE) of 17.4% at 707 nm peak emission with substantially improved efficiency roll-off is reported: over 70% of the maximum EQE (12.2%) is recorded at 10 mA cm-2 , and even at 100 mA cm-2 , nearly 50% of the maximum EQE (8.4%) is maintained. This is an important step in the practical application of organic radicals to NIR light-emitting devices.

9.
J Am Chem Soc ; 145(39): 21330-21343, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738152

RESUMO

The family of hybrid organic-inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-Ci molecules, where Ci indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-Ci)2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic-inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-Ci molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10-100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic-organic electronic properties through the wide range of functionalities available in the world of organics.

10.
Nature ; 620(7974): 538-544, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587296

RESUMO

Molecules present a versatile platform for quantum information science1,2 and are candidates for sensing and computation applications3,4. Robust spin-optical interfaces are key to harnessing the quantum resources of materials5. To date, carbon-based candidates have been non-luminescent6,7, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical-triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies.

11.
Nat Nanotechnol ; 18(9): 981-992, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37653050

RESUMO

Perovskite light-emitting diodes (LEDs) have reached external quantum efficiencies of over 20% for various colours, showing great potential for display and lighting applications. Despite the internal quantum efficiencies of the best-performing devices already approaching unity, around 80% of the internally generated photons are trapped in the devices and lose energy through a variety of lossy channels. Significant opportunities for improving efficiency and maximizing photon extraction lie in the effective management of light. In this Review we analyse light management strategies based on the intrinsic optical properties of the perovskite materials and the extrinsic properties related to device structures. These approaches should allow the external quantum efficiencies of perovskite LEDs to substantially exceed the conventional limits of planar organic LED devices. By revisiting lessons learned from organic LEDs and perovskite solar cells, we highlight possible directions of future research towards perovskite LEDs with ultrahigh efficiencies.

12.
Nat Commun ; 14(1): 4147, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438369

RESUMO

Neutral π-radicals have potential for use as light emitters in optoelectronic devices due to the absence of energetically low-lying non-emissive states. Here, we report a defect-free synthetic methodology via mesityl substitution at the para-positions of tris(2,4,6-trichlorophenyl)methyl radical. These materials reveal a number of novel optoelectronic properties. Firstly, mesityl substituted radicals show strongly enhanced photoluminescence arising from symmetry breaking in the excited state. Secondly, photoexcitation of thin films of 8 wt% radical in 4,4'-bis(carbazol-9-yl)-1,1'-biphenyl host matrix produces long lived (in the order of microseconds) intermolecular charge transfer states, following hole transfer to the host, that can show unexpectedly efficient red-shifted emission. Thirdly, covalent attachment of carbazole into the mesitylated radical gives very high photoluminescence yield of 93% in 4,4'-bis(carbazol-9-yl)-1,1'-biphenyl films and light-emitting diodes with maximum external quantum efficiency of 28% at a wavelength of 689 nm. Fourthly, a main-chain copolymer of the mesitylated radical and 9,9-dioctyl-9H-fluorene shows red-shifted emission beyond 800 nm.

13.
J Phys Chem Lett ; 14(29): 6601-6609, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37459166

RESUMO

The ternary blend approach accomplished improved spectral coverage and enhanced the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the role of the third component in improving the photovoltaic parameters needs critical analysis. Here, we introduced a wide band gap n-type twisted perylene diimide (TPDI) into the PM6:Y6 blend as a third component that improves spectral coverage and morphology, resulting in an overall increase in the efficiency of the OSCs. TPDI acts as an antenna for efficient energy- and charge-transfer processes. A systematic study compared charge- and energy-transfer dynamics and the orientational dependence nanomorphology of ternary blends with those of their binary counterparts. Femtosecond transient absorption measurements reveal enhanced hole-transfer efficiency in finely tuned ternary mixtures. This study provides a rational approach to identifying a third component to improve light management and morphology. These parameters enhance the energy and charge-transfer processes, improving the PCE of OSCs.

14.
Small ; 19(41): e2302494, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37300316

RESUMO

The migration of ionic defects and electrochemical reactions with metal electrodes remains one of the most important research challenges for organometal halide perovskite optoelectronic devices. There is still a lack of understanding of how the formation of mobile ionic defects impact charge carrier transport and operational device stability, particularly in perovskite field-effect transistors (FETs), which tend to exhibit anomalous device characteristics. Here, the evolution of the n-type FET characteristics of one of the most widely studied materials, Cs0.05 FA0.17 MA0.78 PbI3, is investigated during repeated measurement cycles as a function of different metal source-drain contacts and precursor stoichiometry. The channel current increases for high work function metals and decreases for low work function metals when multiple cycles of transfer characteristics are measured. The cycling behavior is also sensitive to the precursor stoichiometry. These metal/stoichiometry-dependent device non-idealities are correlated with the quenching of photoluminescence near the positively biased electrode. Based on elemental analysis using electron microscopy the observations can be understood by an n-type doping effect of metallic ions that are created by an electrochemical interaction at the metal-semiconductor interface and migrate into the channel. The findings improve the understanding of ion migration, contact reactions, and the origin of non-idealities in lead triiodide perovskite FETs.

15.
Nanoscale Horiz ; 8(8): 1090-1097, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37272286

RESUMO

Organic-inorganic nanocomposite films formed from blends of small-molecule organic semiconductors and colloidal quantum dots are attractive candidates for high efficiency, low-cost solar energy harvesting devices. Understanding and controlling the self-assembly of the resulting organic-inorganic nanocomposite films is crucial in optimising device performance, not only at a lab-scale but for large-scale, high-throughput printing and coating methods. Here, in situ grazing incidence X-ray scattering (GIXS) gives direct insights into how small-molecule organic semiconductors and colloidal quantum dots self-assemble during blade coating. Results show that for two blends separated only by a small difference in the structure of the small molecule forming the organic phase, crystallisation may proceed down two distinct routes. It either occurs spontaneously or is mediated by the formation of quantum dot aggregates. Irrespective of the initial crystallisation route, the small-molecule crystallisation acts to exclude the quantum dot inclusions from the growing crystalline matrix phase. These results provide important fundamental understanding of structure formation in nanocomposite films of organic small molecules and colloidal quantum dots prepared via solution processing routes. It highlights the fundamental difference to structural evolution which can be made by seemingly small changes in system composition. It provides routes for the structural design and optimisation of solution-processed nanocomposites that are compatible with the large-scale deposition manufacturing techniques that are crucial in driving their wider adoption in energy harvesting applications.

16.
Chemistry ; 29(61): e202301547, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37377132

RESUMO

Singlet fission is a phenomenon that could significantly improve the efficiency of photovoltaic devices. Indolonaphthyridine thiophene (INDT) is a photostable singlet fission material that could potentially be utilised in singlet fission-based photovoltaic devices. This study investigates the intramolecular singlet fission (i-SF) mechanism of INDT dimers linked via para-phenyl, meta-phenyl and fluorene bridging groups. Using ultra-fast spectroscopy the highest rate of singlet fission is found in the para-phenyl linked dimer. Quantum calculations show the para-phenyl linker encourages enhanced monomer electronic coupling. Increased rates of singlet fission were also observed in the higher polarity o-dichlorobenzene, relative to toluene, indicating that charge-transfer states have a role in mediating the process. The mechanistic picture of polarisable singlet fission materials, such as INDT, extends beyond the traditional mechanistic landscape.

17.
J Am Chem Soc ; 145(19): 10712-10720, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133417

RESUMO

Singlet fission is a photophysical process that provides a pathway for more efficient harvesting of solar energy in photovoltaic devices. The design of singlet fission candidates is non-trivial and requires careful optimization of two key criteria: (1) correct energetic alignment and (2) appropriate intermolecular coupling. Meanwhile, this optimization must not come at the cost of molecular stability or feasibility for device applications. Cibalackrot is a historic and stable organic dye which, although it has been suggested to have ideal energetics, does not undergo singlet fission due to large interchromophore distances, as suggested by single crystal analysis. Thus, while the energetic alignment is satisfactory, the molecule does not have the desired intermolecular coupling. Herein, we improve this characteristic through molecular engineering with the first synthesis of an aza-cibalackrot and show, using ultrafast transient spectroscopy, that singlet fission is successfully "turned on."

19.
Langmuir ; 39(13): 4799-4808, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940205

RESUMO

Controlling the dispersibility of nanocrystalline inorganic quantum dots (QDs) within organic semiconductor (OSC):QD nanocomposite films is critical for a wide range of optoelectronic devices. This work demonstrates how small changes to the OSC host molecule can have a dramatic detrimental effect on QD dispersibility within the host organic semiconductor matrix as quantified by grazing incidence X-ray scattering. It is commonplace to modify QD surface chemistry to enhance QD dispersibility within an OSC host. Here, an alternative route toward optimizing QD dispersibilities is demonstrated, which dramatically improves QD dispersibilities through blending two different OSCs to form a fully mixed OSC matrix phase.

20.
Nature ; 615(7954): 836-840, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949188

RESUMO

Photosystems II and I (PSII, PSI) are the reaction centre-containing complexes driving the light reactions of photosynthesis; PSII performs light-driven water oxidation and PSI further photo-energizes harvested electrons. The impressive efficiencies of the photosystems have motivated extensive biological, artificial and biohybrid approaches to 're-wire' photosynthesis for higher biomass-conversion efficiencies and new reaction pathways, such as H2 evolution or CO2 fixation1,2. Previous approaches focused on charge extraction at terminal electron acceptors of the photosystems3. Electron extraction at earlier steps, perhaps immediately from photoexcited reaction centres, would enable greater thermodynamic gains; however, this was believed impossible with reaction centres buried at least 4 nm within the photosystems4,5. Here, we demonstrate, using in vivo ultrafast transient absorption (TA) spectroscopy, extraction of electrons directly from photoexcited PSI and PSII at early points (several picoseconds post-photo-excitation) with live cyanobacterial cells or isolated photosystems, and exogenous electron mediators such as 2,6-dichloro-1,4-benzoquinone (DCBQ) and methyl viologen. We postulate that these mediators oxidize peripheral chlorophyll pigments participating in highly delocalized charge-transfer states after initial photo-excitation. Our results challenge previous models that the photoexcited reaction centres are insulated within the photosystem protein scaffold, opening new avenues to study and re-wire photosynthesis for biotechnologies and semi-artificial photosynthesis.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Clorofila/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fatores de Tempo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Cianobactérias/metabolismo , Elétrons , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...